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The Advanced Receiver currently being developed uses a Costas digital loop

to demodulate the subcarrier. Previous analyses of Iock detector algorithms for

Costas loops have ignored the effects of the inherent correlation between samples

of the phase-error process. Accounting for this correlation is necessary to achieve

the desired lock-detection probability for a given false-alarm rate. In this article,
both analysis and simulations are used to quantify the effects of phase correlation

_n lock detection for the square-law and the absolute-value type detectors. Results

are obtained which depict the lock-detection probability as a function of loop signal-

to-noise ratio for a given false-alarm rate. The mathematical model and computer
simulation show that the square-law detector experiences less degradation due to

phase jitter than the absolute-value detector and that the degradation in detector

signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.

I. Introduction

Costas loops are being used extensively in modern co-

herent communication systems to track both subcarriers

and suppressed carriers. In many applications, residual

carriers are being replaced by suppressed carriers as the
latter dedicates the total transmitted power to both car-

rier tracking and symbol detection simultaneously. This

has a clear advantage over residual carrier tracking, which
requires a fraction of the total transmitted power delegated

solely to that purpose, and hence, reduces the available

power that can be used for symbol detection. The dis-

advantages of Costas loops are that they require symbol

synchronization and suffer from an additional loss factor

typically referred to as squaring loss, which is highly depen-

dent on symbol energy-to-noise ratio. Squaring loss is the
result of forming the product of the inphase and quadra-

ture signals to wipe out the data modulation, in order to

obtain a feedback error signal that is only a function of

the instantaneous phase error [1]. Another disadvantage of

suppressed carrier tracking is the issue of false lock, which

occurs either as a result of accumulated delay [2] or during

acquisition with frequency uncertainty greater than one-

half the symbol rate [3, 4]. The latter can be detected

through a false-lock indicator, as described in [3].

Lock detection is an important part of a tracking

loop's operation and monitoring, as it provides an insight
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into the tracking loop's behavior in real time. Lock de-
tection basically serves as a binary indicator of whether

the loop is tracking the received signal or not, and during

loop start-up it also indicates whether or not the loop has

acquired the phase of the signal. There are mainly two

kinds of lock detectors for Costas loops, the 12 - Q2, or

square-law detector, and the I I I - ] Q I, or absolute-value

detector [5]. Both have been analyzed in the past at high
loop signal-to-noise ratio (SNR), which basically assumes

zero phase-tracking error. At low loop SNR, the assump-

tion of zero phase jitter becomes inadequate and results in

system operating parameters that are different from their

design counterparts. Thus, a new model is required which
has to account for the phase jitter and the correlation be-

tween samples of the phase-error process. The latter is es-

sential in an accurate performance prediction analysis, in

order to operate the system at the desired lock-detection

probability for a given false-alarm rate. The analysis of
the detectors, including the phase correlation and assum-

ing either a sinusoidal or a square wave signal, is presented

in Section II. In the case of a square-wave, the analysis is

general and includes any windowing operation as described

in [6]. The discussion of the results and some simulated
data are shown in Section III, followed by the conclusion
in Section IV.

I!. Lock-Detection Analysis

Suppressed carrier tracking for binary-phase shift

keyed (BPSK) signals can be accomplished using a squar-

ing loop or a Costas loop [7]. The squaring loop relies on

wiping out the data by a squaring operation and tracking
the resulting residual double-frequency component with a

classical phase-locked loop. The squaring loop does not

require symbol timing, but results in an additional noise
term which becomes dominant at low SNR. On the other

hand, the Costas loop implements a phase discriminator

by forming the product of the inphase and quadrature sig-
nals. That too results in some degradation, commonly

referred to as the squaring loss. Depending on the de-

sign, both loops can be implemented with identical per-
formances for all practical purposes. The Costas loop has

various derivatives, each approximating the maximum a

posteriori (MAP) estimator at different SNRs [8]. For ex-
ample, a hard-limiter can be included in the inphase arm

to estimate the current symbol, and that results in less

squaring loss at high SNRs.

This article is concerned with the lock detection for

the all-digital IQ loop, which is also a derivative of the

Costas loop with integrate-and-dump arm filters. All-

digital refers to the fact that the input waveform to the

loop is a sequence of samples and that the integrate-and-

dump arm filters are digital accumulators. The IQ loop
and square-law lock detector are depicted in Fig. 1 for the

square-wave case, with the optional windowing operation
on the quadrature channel. The analysis that follows will

be applicable for both sinusoidal and square waves. The

received waveform is digitized to produce the samples rj,
which are subsequently digitally mixed with the inphase

and quadrature references. The outputs of the mixers,

running at the sampling rate, are accumulated to detect

the received symbols. It is assumed that there are L sam-

ples per symbol and that perfect symbol synchronization
has been achieved. The accumulator outputs, now at tile

symbol rate, are multiplied together to wipe out the data

and again accumulated to reduce the processing rate even

further. The output, running at a new rate (referred to

as the loop update rate), is the input to the digital loop

filter which provides a frequency estimate to adjust the

phase of the numerically controlled oscillator (NCO). The

lock detector processes tile arm accumulator outputs at

the symbol rate, accumulates the result over M symbols,

and provides a binary decision on the loop status.

In the I and Q branches of Fig. 1, the signals accu-

mulated over L samples during the kth symbol interval are

given by

Xlk = dkLvl_Dwk -t- nll¢ k=l,...,M

and (1)

z@k = dkLv/-_DVk + nqk k = 1,...,M

where

( I) 2_k= 1-]u_ uk=--¢k, l ekl<_r
' 7r

uk

vk = sgn(Ck)W

2sgn(Ck) - uk

l¢, I_<,rW/2

_rW/2 -<l ¢2 [_< _r(1- W/2)

7r(1- W/2) <} ek l<_zr

(2)

for a square-wave subcarrier and

&k _--_COS ek

sin ek
vk ---- sin(¢k W)

sin ¢2

I Ck I_< _w/2

_rW/2 -<1¢2 l_< zr(1- W/2)

_(1 - W/2) <_1Ck 1<_

(3)
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for a sine-wave subcarrier, where P9 is the average data
power, d_ is the data value of the kth binary symbol (+1

equally likely), Ck is the subcarrier phase-estimation error

(radians) at time k, W is the width of the window in the

Q channel (i.e., the fraction of cycle of the reference signal

which has nonzero value W < 1 [IV = 1 means no window

is used]), and n1_, nQk are zero-mean white Gaussian noise

samples. From Eq. (1), the mean values and the variances

of xik and xe_ conditioned on Ck and dk are given by

#I_ = dkLx/'_OWk o'_ = Lcr_

and (4)

ttQk = dk L v_D Vk _r5= WL_

2 = NoB,_ is the noise variance of a received sam-where o'rt

pie, No is the one-sided noise spectral density, and B,_ is

the Nyquist bandwidth. The equations that follow are ap-

plicable to both sine and square waves.

A. Square-Law Detector

The first algorithm considered detects the in-lock state

by producing a signal that is proportional to the cosine

of the phase error (in the case of a sinusoidal wave) and

averaging it over several symbols before comparing it to a
threshold v. Referring to Fig. 1,

M

YkXr, where yk a_x_ k_a_k (5)
k=l

An estimation of the performance of this lock detector re-

quires the first and second moments of x_k and x_k con-
ditioned on ek, which are readily obtainable:

4--_= ,L + 4 (6a)

(65)

(Ta)
w

2 2 3@x_k = #4k + 6_1k'_z +

Qk + 6t'tQkCrQ (7b)

where #zk, /_qk, cry, and _r_ are given by Eq. (4). Using

Eqs. (6) and (7), the variances of x]k and x_a become
respectively

var(d_) _ _ 2_= 4p.,ka I + (8a)

and

var(x_k) = 4#_ko" _ -4-2(r_ (8b)

The mean value of Yk is obtained from Eqs. (4) and (6) in
Eq. (5), namely

_ = L_P_(,4 - _) + L_2(1- W)

The variance of Yk, c_k, will be the sum of variances of x_k

and x_k , and is obtained by using Eq. (4) in Eq. (8), i.e.,

°'2y, =2L2a4[ 2LPD w_ ]--_( _+ Wv_) + 1+ w _

The lock-detector signal z is the accumulation of Myk sam-

ples, which are highly correlated due to the phase-error

samples. The mean value and variance of z, pz, and a_

are derived in the Appendix, where it is shown that

#, = M(L2PDd + La_(1 - W)) (9)

and

2 M_L4p_)(g d2) + 4ML3PI)a_(f + hW)O"z =

+ 2ML2cr4(1 + W 2) (10)

The parameters d, f, h, and g depend on the waveform

type and are given by (b _- Wr/2)

d_l-2 _

4

4
h=-_-$

g=l 8_-_+ _ 1
7 _-_ _ c(k)d(k)

k-O

where
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and for a square wave and

1

or:= (2)2W (_)(1+ 2ET/No) (11)

for a square-wave subcarrier, and

=

f = 0.5 (1 + exp(-2cr_))

h = 0.5 (1 - exp(-2o'_))

M-1
1

k=0

1

a_= (_)W (1+ 2Es/N'----_) (12)

0.5(1 + exp(-2o'_)) for k = 0
=

exp(-4a_)cosh(2a_C(rk)) k= l,2,...,M-1

for a sine wave; C(rk) is the correlation function of the

phase-error process in the tracking loop, which is assumed

to be of the form given by Eq. (A-9) [9], and the second-

order joint probability density function of the correlated

phase process P(¢1,¢2, r_) is assumed as in Eq. (A-10).

When the loop is in-lock and assuming high loop SNR,

Ck _ 0 for all k. Hence w_ --_ 1 and v_ --* 0, and the above

mean value and variance of the detector's signal simplify
to

I_ = M(L2PD + Lo'_(1- W))

2=4ML2a4[LPD 1 +2.W2 ][ ,%--/-+ ""

which are true for both square-wave and sine-wave sig-

nals. Note that in the above equation the following rela-
tion holds:

LPD 2Es

er2n No

for a sine-wave subcarrier. Note that Eqs. (11) and (12)

specify the variance of the phase jitter, assuming the linear

loop model. For example, at 15 dB of nominal loop SNR,

the actual variance a_ can be about 1 dB larger. Nominal

loop SNR p is defined as 1/a_, where tr_ is obtained from
the linear model; B,¢ is the one-sided noise bandwidth of

the Costas loop, and Es/No is the symbol energy-to-noise

ratio. The constants c(k) and d(k) are defined as follows:

M for k- 0c(k)= 2(M-k) for k= 1,2,...,M-1

for both waveforms, but

because L = 2T, B, (Nyquist sampling), where T, is the
2 NoB,, and T, PD E,, the energy persymbol time, cr = =

symbol.

B. Absolute-Value Detector

For the absolute-value detector, tile squaring opera-

tion in Fig. 1 is replaced by an absolute-value operation,

and the algorithm defining the new lock detector becomes

M

Yk _ r,
k=l

where
A

y_ = I x,k I - I zQk I (13)

b b

-b -b

, ¢2, rk)d¢ld¢2
In order to estimate the performance of this lock detector,

the first and second moments of I Zlk [ and ] xQk [ are

needed, again assuming a white Gaussian noise process at
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the phase-locked loop input. These moments, conditioned

on Ck, become

I_lk IA _ik

\v No ")

+ -- cr,_exp _oo

(14)

[ xQk [ A: rQk

= LV/_D v_ erf t V N-----o-_)

phase process in the tracking loop. This is carried out in

the Appendix and gives

p, = Mpv

No

(16)

+ EE (_ + _) - M2 (FT2 + _-_q2)
all i,j
i#j

(171

The second moments of i zsk I and I zQk ] are identical
to the second moments of zsk and zQk, and are given by

Eq. (6). The mean value of yk follows from Eqs. (13) and

(14):

A
Pyk = rib -- rQk

--Lv"_-; _er' t,V-Z:0_7 -v,,erritVN-7-o-o-o-o-o-o-o-om-))

(ox  O- exp+ o'n No

(15)

and the variance of yk is

_2
2 L_p. (_ + v_) + L_.(1 + W) - (_ + ,'Q_ )Cry k -'-

The lock detector's signal z is again obtained by adding

Myk samples. The mean and variance of z are found by

averaging the first two moments of z over the correlated

The bar over the product terms denotes expectation over

the joint probability density function of ¢i, Cj, assumed
to be of the form given by Eq. (A-10), and rsk, rQk are

defined by Eq. (141. Because no closed-form solutions for
the above averaging operations are known, the averaging

was done numerically. When the loop is in-lock and at

high loop SNR, Ck ---* 0 for all k. Hence, w_ ---* 1 and

v_ --* 0, and the above mean value and variance of the

lock detector simplify to

+ _'_ c% (exp (--_)- _)] (18)

2 M [L2PD + L(7_(1 + W)o"z _

+ an exp -

(19)
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C. Probability of Detection and of
False Indication

During subcarrier detection, each z sample is com-

pared with a predefined threshold r, and the lock detector

decides that the loop is in-lock when z > r. It is possible
that even when no signM is present, z will occasionally be

larger than r. In this ease, the lock detector will mistak-
enly declare an in-lock condition. The probability of false
indication is

c_

1 .

T

dz

(20)

where pz0 and cry0 are the mean and variance of the lock-
detector signal in the out-of-lock state, and erfc(z) is the

complementary error function (erfc(x) = 1 -eft(x), where

eft(x) is the error function defined in the Appendix). For
2

the square-law detector, /t_0 and crz0 are obtained from

Eqs. (9) and (10) by making PD = 0 (or, equivalently,
assuming that _ and _" in Eq. 4 are zero), namely

,,0 = Mr  (1- W)

2 = 2ML2a_(1 + W 2)O'z0

whereas for the absolute-value detector, Eqs. (18) and (19)
result in

2 MLa_ (1 -2 ) (I+W)O'zO _.

(21)

Given a desired probability of false indication P], the
threshold r is obtained by solving Eq. (20) and setting

it equal to

r = erfe-1 (2Ps) + m0 (22)

where erfc-l(.) is the inverse complementary error func-

tion. When the loop is in-lock, it can be argued via the

central limit theorem that the random variable z is ap-

proximately Gaussian, with mean and variance obtained

earlier for either the square-law or the absolute-vMue de-

tector. For either detector, the probability of detection
is

1 f ((Z-pz)2_Pd = _ exp 7cr7 ,] dz
T

where p, and o,2 are given by Eqs. (9) and (10) or by

Eqs. (16) and (17). Defining the detector's SNR as

SNR_ _- /j_._2 (23)

then, for/z_0 = 0 (W = 1), the probability of detection in
terms of SNRz can be expressed as

Pd= 7 erfc erfc_l (2Pj)-
\ o'z

The above equation shows the dependence of the proba-

bility of detection on the detector's SNR. Phase jitter in
the tracking loop degrades the detector's SNR by a factor
D:

D = SNR_/SNR_ (ideal) (24)

where SNRz (ideal) is the detector SNR, assuming infinite
loop SNR, i.e., no phase jitter. SNR_ (ideal) is computed
from Eq. (23) using the high-SNR expressions in Eqs. (18)

and (19) for #_ and _. For agiven W, M, loop SNRp

(p = 1/_r_ where o_ is given by Eq. 11 or 12 repectively),
and P/, the detector's SNR must be increased approxi-

mately by the factor lID in order to achieve a desired
probability of detection.

III. Discussion and Numerical Results

Computer simulation was performed in order to check

the predictions of the analysis. Figure 2 depicts the prob-

ability of lock detection versus symbol energy-to-noise ra-

tio E_/No for both sine-wave and square-wave signals, as-

suming ideal conditions, i.e., no phase jitter in the track-

ing loop. The square-law detector performs slightly better
than the absolute-value detector for a given symbol SNR.

The degradation in detection probability for a finite-

loop SNR is shown in Figs. 3(a) and 3(b) for the square-law
and absolute-value detectors, respectively. The threshold
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r was set to achieve probabilities of false detection P! of
10 -1 and 10 -4, and detector SNR was set to achieve nomi-

nal probabilities of detection Pd of 0.99 and 0.90. Nominal

probability refers to the case of no phase jitter in the loop.
It is clear that sine waves produce less degradation than

square waves, and this is true for both detection schemes.

The performance of both detectors is compared in

Fig. 4 for square-wave signals only, since the difference

in performance is almost negligible for sine-wave signals.
The performance with respect to detector SNR is shown

in Fig. 5 for a 15-dB loop SNR. The improvement in de-

tection probability due to windowing is clear for both de-

tectors and can result in several decibels. Finally, Fig. 6
depicts both theoretical and simulation points of detec-

tor SNR degradation D (defined in Eq. 24) versus loop

SNR. The degradation in SNR is slightly larger for the
absolute-value detector than for the square-law detector

when tracking a square wave, but less when tracking a
sine wave, and it can be as large as 3 dB depending on the

operating parameters.

The results are summarized in Figs. 7 and 8. The

detector SNR as a function of E_/No is shown in Fig. 7
for both infinite and 15-dB loop SNR, and for W = 1.0

and 0.25. When W = 1, a good rule of thumb is that

the detector SNR varies linearly with E_/No, with slope
equal to 2/3 on a decibel scale. For different values of M,

the curve will be scaled vertically in a linear fashion. Fig-

ure 8 depicts the detection probability for the square-law

and absolute-value detectors respectively, as a function of

E_/No for both infinite and 15-dB loop SNR. The con-

clusion from Fig. 8 is that when operating at low loop

SNR (i.e., 15 dB), an extra 1.5-dB increase in Es/No or a

comparable increase in M will achieve the detection prob-

ability which was designed for assuming infinite loop SNR.

For design purposes, Fig. 9 can be useful since it
depicts both the detection probability and the required

threshold as a function of M for both detectors. As a

design example, suppose that the absolute-value detector

is required to operate at P! = 10 -4 and Pd = 0.99, and

that the signal is a square wave with symbol rate r, = 80
symbols per second, E,/No = 0.0 dB, and loop SNR =

15 dB with a quarter window (W = 0.25). Figure 9 indi-

cates that at least 90 detector samples (Yk) are needed to
achieve 0.99 probability of detection.

Setting M = 100 (integration time = 1.25 see), r

is obtained using Eqs. (21) and (22), with P! = l0 -4.
Figure 9 predicts that r should be set to 46, assuming

that the outputs of the int_ate-and-dump devices are
scaled by the factor 1/X/2o'_L. Using Fig. 7 (M = 30),
one can check that when the detector is in-lock, SNRz ,-_

13 + 10log10(100/30 ) = 16.3 dB, where scaling was per-
formed to extend the results of Fig. 7 for M = 100.

This is confirmed in Fig. 5, which depicts Pd = 0.99 for
SNR, _ 16 dB.

IV. Conclusion

This article presents a mathematical model of the

performance of two lock detectors for Costas loops: the

square-law detector and the absolute-value detector. The
model concentrates on the impact of phase jitter in the

tracking loop on the performance of the lock detectors.

Results of the analysis were verified by computer simula-

tion and show that low loop SNRs result in a degradation

in probability of lock detection, the amount of which is

dependent on the scenario of interest. That decrease can

be overcome by properly readjusting the design parame-
ters. It was further shown that the square-law detector

experiences less degradation due to phase jitter than the

abolute-value detector, and that the degradation in de-

tector signal-to-noise ratio is more pronounced for square-
wave than for sine-wave signals.
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Appendix

Derivation of Detector's First Two Moments at Low Loop SNR

A. Square-Law Detector

Using Eq. (5) with Eq. (4), the expression for lock-
detector signal is rewritten as follows

n 2

+ 2dkLv/-_D (w_nlk -- vknqk)

-- ak + bk + Ck

M

z = F_,(a_ + b_+ c_) (A-l)
k=l

To assess the performance of the lock detector, the first two

moments of z are needed. For a square-wave subcarrier,
4

w_-v_ = 1- 7 [ _b_ [, and for a sine-wave subcarrier,
2

w k - v_ = cos 2¢k. Assuming that ¢ is a zero-mean (no

Doppler) Gaussian phase process, it can be shown that

Eqs. (h-2) and (A-3) are independent of k. The expected
value of z is

,z = M(L2PDd + La_(l - W)) (A-4)

where d is the signal degradation factor due to phase jitter

in the tracking loop, and _'; = 0. Using Eq. (A-2) results
in

d= 1-2 _r_ 1-exp -

for a square-wave subcarrier, and

d : exp (-2¢r_)

for a sine-wave subcarrier. To compute the variance of z,

Eq. (A-I) is used to get

[¢6 [ = ¢ 1--exp -- (A-Z) M M M ,_f

= AE 52 +E 52 - 4,)
i:1 j=l /=1 /=1

and

acb exp - (A-a)

M M M

i=1 i=1 j=l

where b a w,r= --y--, 0"3 is the variance of the phase-jitter process
in the subcarrier loop, and erf (x) is the error function
defined as

erf(x) I, 2 f0 x=_ exp(-?)dl

where A = L4P_, B : 4L2PD, C = 2L2PD, and gi =

(w_ - v_) -- (1 - 4 ]¢i ]) for a square-wave subcarrier. In
the above equation, six terms were left out because their

expected value is zero. Taking the expected value of z 2,

first over the thermal noise, and second over the phase

process in the tracking loop, the following is obtained:

At first glance, Eq. (A-3) seems to express the variance
of the phase-error process as a nonlinear function of itself.

This is not the case since ¢_ is the variance in the window

of the loop, and o'_ is the variance integrated over the
complete density. This subtle effect is due to the Gaussian

assumption, which approximates a density over a finite

interval by the Gaussian density which is over an infinite

interval. Numerically, ¢_ and o"3 are very close for all
practical values of loop SNR. Note that the moments of

z-'___ L4p_M2g + 2ML2c_4(1 + W 2)

+ M2L2a4(1 _ W) 2

+ 4ML3pDa_(I + hW)

+ 2M2Laa2n(1 - W)d (A-5)
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where

M M
1

i:1 .4=1

and f, h are given by

:=0f = oak 71" _ff

4
(h-6)

for a square-wave subcarrier and

f = oa_ -----c°s2 O = 0.5(1 + exp(-2_r_))

h = sin 2 ¢ = 0.5(1- exp(-2o'_))

(A-7)

for a sine-wave subcarrier. The variance of z can be found

2 _-: (_)2. Using Eqs. (n-4) andfrom the relation oz = -

(A-5) results in

2 M2L4pg(g d_) + 4ML3PD_r_(f + hW)6rz _-

+ 2MLZcr4(1 + W e) (A-S)

Note that at high loop SNR, g ---+1, d ---+ 1, f --+ 1, h ---+0,

and Eqs. (A-4) and (A-8) reduce to

#_ = ML2PD + MLa_(1 - W)

2 = 4ML2_4 [ LPD i+.{W2]

as they should. In order to evaluate g, one must know the
correlation between samples of the phase-error process in

the tracking loop. That was obtained by simulation and is

shown in Fig. A-1. A good closed-form model is given by

n(r) = a_C(r) (A-Oa)

where

C(r) = (1 [ BLr_ !)exp (--1.25BLr) (A-Ob)

and where a_ is the closed-loop variance of the phase pro-
cess and BL is the one-sided loop bandwidth. In order

to evaluate g, one needs to know the second-order joint

density function of the phase-error process P(¢i, Cj, r). As
an approximation, it is assumed to be a two-dimensional

Gaussian density specified by the means, variances, and

correlation coefficient R(r), which is obtained by simula-
tion. Hence,

p(¢i,¢_,_)_
2_gm(0) - m(_)

( - + n(o)4]
exp

\

1

(_+,, +_
exp

\
(A-10)

IIere g can be evaluated from the following:

g = _ 2 _ gigjp(¢i,Cj,vij)d¢id¢j (A-11)
i=l j=l -b -b

nj = TL(i - j) = ti - tj

Expanding Eq. (A-11) for the square-wave subcarrier re-
sults in

(,_;,,:+<4;)
where

s = _ I¢, II ¢_ IV(¢l,¢_,n_)d¢:d¢_
i=1 -- -- -b

(A-12)

The correlation function in Eq. (A-10) is symmetric, i.e,

R(rO. ) = R(Ui), and depends only on the magnitude of
the difference k =] i- j I. This property allows the double

summation in Eq. (A-12) to be reduced to a single sum-
mation:

M-1
1

k=O

86



wherec(0) = M, e(k) = 2(M- k) for k = 1,2,...,M - 1,
and

b b

-b -b

v'M-1 c(k) M 2Note that z-_k=0 = as it should. For k = 0, the

above probability density function (pdf) reduces to a delta

function times a zero-mean Gaussian pdf with variance a_,
so that

Because

I ex 11¢2I=

the first term of Eq. (A-8) can be rewritten as follows:

It can be shown that the lower bound of the above equation

equals

Keeping all detector parameters constant, as the loop SNR

2 SNR,, PI, and Pddecreases (i.e., a_ increases), /_,, _rz,
decrease.

For a sine-wave subcarrier,

M-1
1

g=_-_ _] c(k)d(k)
k=0

where c(k) is the same as in the square-wave subcarrier
case, and

0.5(1 + exp(-2a_)) for k=O
d(k): exp(-4a_)cosh(2z_C(rk))k:l,2,...,M-1

B. Absolute-Value Detector

At low SNR in the tracking loop, the mean value of

the detector's signal z is obtained by taking the expected

value of Yk (Eq. 15) over the phase process in the tracking
loop, and multiplying the result by M (the number of yk

samples):

p_ = M (r-'_" - r-'-_)

w erf _V -_-o _ ) -verf

+_/_<r,_ lexp (-N_W2)- v/'Wexp (- EN_ -_-))]

where w and v are defined by Eq. (2) or Eq. (3), and

rlk and rQk are defined by Eq. (14). The variance of z is
2 z-y _ _-2, namelyobtained from c_z =

M M M M

2

i=1 j=l i=1 j=l

i=1 j=l i=1

The following is now obtained:

2 M(L2PD("_+-_)+Lcr_(I+W))Gtz =

+ EE (_ + _)- M2 (_-[_ + _QQ2)
all L.i
i#j

where again ri and rQ are defined by Eq. (14). Unfortu-

nately, closed-form solutions for most of the above equa-
tions are not obtainable and their evaluation has to be

done numerically.

The double sum in the above equation equals

M-1

k=l
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where c(k) = 2(M- k) for k = 1,2,...,M- 1, and

b b

-b -b

x P($1, _b2, rk)d$ldqJ2

where the probability density function is again approxi-
2 ismated by Eq. (A-10). An upper bound of a,

M(LuPD + L_(1 + W)- (_'T2 + _-_Q2))

and a lower bound is

M(L2Po(f + h) + La_(l + W)- (_-[2 + _QQ_))

where f and h are defined in Eqs. (A-6) and (A-7).
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